
Animator
April 3, 2018

Objectives

 Modeling the Scene

 UI

 Texture Mapping

 Keyframe Interpolation

 Sound (synchronized to collisions)

 Static Collision Detection

 Dynamic Collision Detection

 Physics Engine (gravity)

 Reflection Mapping

 Cel Shading

Purpose

The purpose of this project is to develop an application that allows users to create animations by

specifying keyframes. The models will behave according to some laws of physics, such as

gravity and the conservation of momentum.

Goals

Interpolating between keyframes

 Animating transformations (translation, rotation, scaling) of a model from one keyframe

to the next.

Behavior of the model after the last keyframe

 Animating the effect of gravity on the model after the last keyframe

Collision Detection

 Getting the collision time between two models and the normal of the face it collided with

3D Elastic Collisions

 Having the models bounce back after collision, following the conservation of momentum

Sound

 Play the collision sound when two models collide. The volume is based distance from the

camera and speed of the model going into the collision

Texture Mapping

 Save the UV coordinates of each model that gets imported and make changes to the

Fragment Shader to get the color of the texture at the current coordinate

Skybox

 Add a skybox to the scene, which is a cube around the camera that is only transformed by

camera rotation, not translation

Reflection Mapping

 Make changes to the Vertex Shader to obtain the reflected ray, and the Fragment Shader

to get the color of the skybox at the point where the reflected ray hits

Cel Shading

 Make changes to the Fragment Shader to output the interval that the color belongs to

Statement

Traditionally, to create an animation, a master artist draws the keyframes while sweatshop artists

draw each frame between the keyframes through inbetweening. This application allows users to

create animations much easily and quickly. The user only has to set keyframes by transforming

3D models in the scene and the program will interpolate between keyframes for them.

Similar animation software already exists, such as Blender and Synfig (2D only). However this

application not only interpolates linearly between keyframes, it also simulates some properties of

physics. For example, to animate a bouncing ball, the animator only has to set gravity for a

model and press play. The ball will fall by itself without additional keyframes, and every time it

hits the ground, it will bounce back according to elastic collisions. In existing animation

software, users will have to specify keyframes for each bounce, as opposed to only needing the

initial keyframe in this application.

With this application, creating an animation would be as simple as moving objects around in real

life. The keyframe interpolation will move models from one position to another, while the

physics engine causes the models drop and bounce according to laws of physics.

Webpage: http://acmyu.github.io/animator.html

http://acmyu.github.io/animator.html

Manual

Compiling

Compile the program on the Linux command line in the project’s directory with:

export ORIGIN=$(pwd)

premake4 gmake

make

Starting the program

Run the program on the command line with:

./Project <.lua or .ani file>

A .lua file opens a scene that is not yet animated. For example, Assets/simpleScene.lua

opens to the scene below:

The Animator Interface on the left will only have the initial keyframe, t=0. To animate it, the

user will need to add more keyframes.

A .ani file opens to an animation that was previously exported. The Animator Interface will have

keyframes that were previously saved. The user can play or modify the animation. To export the

new changes overwriting the .ani file, press x on the keyboard.

To play an animation, press the SPACE bar.

Transforming the Camera and Model

The user can transform the camera or the selected model after selecting the mode on the

Animator Interface on the left. For model transformations, select a model by left clicking on it. A

selected model will tint yellow. Select multiple models by holding down the CTRL key. The

modes are:

 Camera mode: Clicking and dragging the mouse on the screen will rotate or translate the

camera

o Left click: translate camera on the x- or y-axis. The amount translated on the x-

axis depends on the change in the x position of the mouse, and the y-axis depends

on the change in y position

o Middle click: rotate camera on the z-axis. The amount rotated depends on the

change in the y position of the mouse

o Right click: rotate camera on the x- or y-axis. The amount rotated on the y-axis

depends on the change in the x position of the mouse, and the y-axis depends on

the change in x position

o Scroll: translate camera on the z-axis

 Joints/Rotate mode: Clicking and dragging the mouse on the screen will rotate the

selected models. Rotating a joint is currently untested and may not work in an animation.

o Middle click: rotates the model on the y-axis, depending on the change in the y

position of the mouse

o Right click: rotates the model on the x-axis, depending on the change in the y

position of the mouse

 Translate mode: Clicking and dragging the mouse on the screen will translate the

selected models.

o Middle click: translates the model on the z-axis, depending on the change in the y

position of the mouse

o Right click: translates the model on the x- or y-axis. The amount translated on the

x-axis depends on the change in the x position of the mouse, and the y-axis

depends on the change in y position

 Scale mode: Clicking and dragging the mouse on the screen will scale the selected

models.

o Middle click: scales the model on the z-axis, depending on the change in the y

position of the mouse

o Right click: scales the model on the x- or y-axis. The amount scaled on the x-axis

depends on the change in the x position of the mouse, and the y-axis depends on

the change in y position

The Animator Interface

The Animator Interface is the window on the left that lets the user change the mode, change the

current time, select keyframes, and set properties that apply to the entire scene.

The user can minimize and reopen the windows by double clicking on the top bar of the window.

To change the current time, drag the Time slider. This will move the animation forward in time

similar to a playback bar. The models and camera will move based the time that the user dragged

the slider to. The time displayed on the slider is in milliseconds.

The Max Time slider specifies the length of the animation. The user can lengthen or shorten the

animation by dragging it. The default is 60 seconds, the minimum is 1 second, and the maximum

is 300000 seconds. Shortening the animation will delete all keyframes past the max time.

The list of Keyframes allows the user to jump to existing keyframes and edit them. The user can

select the keyframe by clicking the radio button corresponding to the time of the keyframe,

which will move the scene to its state at that keyframe. The user can delete any keyframe except

for the initial t=0 keyframe by clicking the Delete button right beside it.

The Gravity slider allows the user to change the acceleration of gravity. The default value is

9.81 m/s2 where each pixel corresponds to a meter. The X, Y and Z radio buttons let users

specify the down axis, which is the axis along which the models fall.

The Cel Shading checkbox allows users to turn cel shading on or off.

The Skybox dropdown allows users to select a skybox to apply to the scene.

The Model Interface

The Model Interface allows users to edit the last selected model. This window only appears when

a model has been selected. The interface has the following sections:

 Physics: This specifies which laws of physics apply to the model

o Dynamics: If checked, the model will move between keyframes according to

kinematic equations (instead of linear interpolation), bounce off in a collision

(instead of stopping when it collides) and continue moving in constant motion

after the last keyframe (instead of stopping).

o Gravity: If checked, the model will drop down and move according to projectile

motion after the last keyframe based on the acceleration of gravity specified in the

Animator Interface. If not checked, the model will move in constant motion or

stop after the last keyframe depending on the Dynamics checkbox.

o Mass: This affects the behavior during a collision. According to the conservation

of momentum, the velocity after collision depends on the mass of the model and

what it collided

 Material: This lets users change the appearance of the model

o kd: This color editor lets users change the diffuse color of the model by dragging

each RGB value

o ks: This color editor lets users change the specular color of the model by dragging

each RGB value

o Texture: The user can select a texture from the dropdown that will be applied to

the model through texture mapping

o Tint: This slider appears after a texture has been selected. It tints the texture

based on the color in kd.

o Shininess: The strength of the specular light. To turn off specular lighting, drag it

to the maximum value.

o Reflectivity: How much the model reflects the skybox. It will be completely

reflective if dragged to the maximum value

o Transparency: How much the skybox can be seen through the model. It will be

completely transparent if dragged to the maximum value

o Refractive index: Specifies the refractive index of the model if it has

transparency. Air has refractive index of 1, water is 1.33

 Sound: Lets users specify the sounds the model will make when collided or moving.

o Collision: This sound will play once when the model collides with another model.

The volume depends on the speed before collision and the distance to the camera.

o Moving: This sound will play in a loop as long as the model has non-zero

velocity. The volume depends on the speed it’s moving and the distance to the

camera.

Keys

Additional features can be used by pressing certain keys on the keyboard. These are:

 u: Undo the transformation to the model or camera. Each keyframe has its own undo

stack

 r: Redo the transformation

 x: Export the animation to Animations/new.ani. This saves all keyframes and settings, so

the user can import it with ./Project <path to .ani file>

 q: Quit the program

Creating a Simple Animation

1. Create a .lua file with models you will use. The models must be the existing .obj files in

the Assets folder.

2. On the command line, run

./Project <path to .lua file>

3. Select a model on the screen. Click on the Model Interface > Physics > Gravity

checkbox. Press the SPACE bar. This is a simple animation where the model drops down

based on gravity. Uncheck the Gravity checkbox.

4. Drag the Animator Interface > Time slider forward in time. Select a mode on the

Animator Interface. Do a camera or model transformation. A new keyframe should

appear on the list of keyframes in the Animator Interface. Select the t=0 keyframe. Press

SPACE bar. The model or camera should move based on keyframe interpolation.

5. Press x on the keyboard to export the animation. It will get exported to

Animations/new.ani. Rename this file.

6. Quit the program and run

./Project <path to .ani file>

 This imports your animation to play or modify

Examples

./Project Animations/spirited-away.ani

 An animation based on a scene from the anime Spirited Away. Press SPACEBAR for

animation to start

./Project Animations/orbs.ani

 An animation with 6 spheres that have reflectivity or transparency. Press SPACEBAR for

animation to start

./Project Animations/stairs.ani

 An animation where the cube will jump down the stairs. Press SPACEBAR for animation

to start

./Project Assets/simpleScene.lua

 A scene with 6 models. Select a time for the new keyframe by dragging the Time bar on

the left ui window. Select a model by clicking on it. You can add physics, texture, sound,

etc. to the model on the right ui window. Select Rotate, Translate or Scale mode on the

left ui window and transform the model. Then press SPACEBAR for animation to start.

Organization

Directories

 All source files (.cpp and .hpp files) are located in the main project directory

 Assets/: Contains the .obj files, Vertex Shaders, Fragment Shaders and example .lua files.

Has subdirectories:

o texture/: Textures (.bmp files) that can be selected for texture mapping

o sound/: Sounds (.wav files) that can be used for a model’s Collision or Moving

sounds

o skybox/: Folders containing skyboxes. Each folder contains front.bmp, back.bmp,

left.bmp, right.bmp, top.bmp, bottom.bmp, which are used as textures for each

side of the skybox

 Animations/: Contains .ani files which are exported by the program to save keyframes

and settings of animations. They can be imported with ./Project <path to .ani

file>

 lib/: contains libsfml-audio.so and libsfml-system.so, which are libraries used for playing

sound

 include/SFML/: contains SFML header files. Only SFML/Audio.hpp is included by

Project.cpp for playing sound.

Source files

 Project.cpp, hpp

o Imports the .obj meshes, lua file or ani file

o Initializes values

o UI

o Handles user input, such as mouse input

o Draws each frame, updates shader uniforms

o Saves keyframes and animation settings

o Interpolates between keyframes

o Handles collisions (calculates velocity after collision, plays collision sound)

o Saves and applies model states

 SceneNode.cpp, hpp

o Does model transformations (translate, rotate, scale)

o Saves model settings (sounds, materials, physics)

 GeometryNode.cpp, hpp

o Parses .obj files into meshes, consisting of vectors of vertices, normals, uv

mappings, and faces

o Applies transformations to meshes

o Calculates the bounding sphere of this model

o Collision Detection algorithm

Implementation

Model Transformations

Each model has a NodeState containing the coordinates of the “center”, angle of rotation, amount

of scaling, etc.

The center of the model is initially the origin. When a model gets translated or rotated, the

transformations are also applied to this point. This would keep track of the model’s current

location in the world coordinate system. To translate to a new location specified by center, it

would translate by the amount (center – oldCenter). More generally, to transform to a new value,

the amount it needs to transform is (newValue - oldValue)

Rotating the model will rotate it about its own x, y or z-axis. Each time the model gets

transformed, its x, y and z-axis get transformed too. This would make it easier to save the angle

of rotation for each axis, since the order of the transformations wouldn’t matter. If it was rotated

about the world coordinate system’s axis, the order of transformations would matter. For

example, rotating it first and then translating would be different from the other way around.

Linear Interpolation between Keyframes

Each keyframe is saved as an instance of the Frame class containing the NodeState for each

model, the time of the keyframe, the camera transformations at this keyframe, an undo stack, and

the initial velocity, displacement and acceleration to get from this keyframe to the next.

For linear interpolation, each time the program draws a frame, it interpolates the transformations

for the current time t between the previous and next keyframes [1].

𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑡𝑖𝑚𝑒

𝑛𝑒𝑥𝑡𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑡𝑖𝑚𝑒 − 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑡𝑖𝑚𝑒

Then for each model:

𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑡 ∗ (𝑛𝑒𝑥𝑡𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟)

𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 + 𝑡 ∗ (𝑛𝑒𝑥𝑡𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍

− 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍)

And similarly for scaling. Each model would be translated to center, rotated to angleX,Y,Z for

each respective axis and scaled to the new scale amount.

The camera transformations (saved as translation matrix T and rotation matrix R) are

interpolated similarly.

A problem arises when the angles of previous and next keyframes have different signs. Since all

angles are saved as degrees between 0 and 360, a negative angle –d is saved as 360 – d. For

example, instead of going from 20 to -10 degrees, the interpolation would make it go from 20 to

350 degrees!

This is problem is solved by instead interpolating the angle with:
𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 − 𝑡 ∗ (𝑛𝑒𝑥𝑡𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍

− 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 − 𝟑𝟔𝟎°)

Another challenge is determining whether the rotation is supposed to be clockwise or counter-

clockwise. Each keyframe saves the field Vec3 ccw for each model, containing the total mouse

displacement when rotating the model. If the ccw for the axis is negative, the model was rotated

counter-clockwise, otherwise it’s clockwise. To avoid a problem similar to previously described:

the angle would be interpolated instead as:

𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 − 𝑡 ∗ (𝑛𝑒𝑥𝑡𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍

− 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎𝑛𝑔𝑙𝑒𝑋, 𝑌, 𝑍 + 𝟑𝟔𝟎°)

Keyframe Interpolation with Kinematic Equations

For models that move according to kinematic equations, rotations and scaling are the same as

linear interpolation, but translations are interpolated according the initial velocity v0, acceleration

a to get from previous to next keyframe on time, and displacement d between the previous and

next keyframes.

Each time a new keyframe is created, it updates its own v0, and a and d of the previous keyframe

for each model.

𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑑 = 𝑛𝑒𝑤𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟

𝑡 = 𝑛𝑒𝑤𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑡 − 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑡

By rearranging kinematic equation d=v0*t + 0.5a*t2

𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎 =
2(𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑑 − 𝑡 ∗ 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣0)

𝑡2

𝑛𝑒𝑤𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣0 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣1 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣0 + 𝑡 ∗ 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎

With v0, a and d saved for each keyframe except for the final keyframe, we can interpolate based

on kinematic equations to find the velocity and position of the model between two keyframes.

𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑡𝑖𝑚𝑒

𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑡 ∗ 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣0 +
1

2
𝑡2 ∗ 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎

𝑣 = 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣0 + 𝑡 ∗ 𝑝𝑟𝑒𝑣𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑎

This would allow models to change velocities smoothly, letting it make smooth turns and

gradually speed up or slow down.

Motion after the Final Keyframe

After the final keyframe, the model can have 4 possible behaviors depending on its settings:

 Linear interpolation without gravity (Dynamics off, Gravity off): The model stops

moving. Interpolation no longer happens for this model so it stays in the same place

 Linear interpolation with gravity (Dynamics off, Gravity on): The model falls.

Interpolation happens to the model based on the acceleration of gravity G:

𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑓𝑖𝑛𝑎𝑙𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑡𝑖𝑚𝑒

𝑐𝑒𝑛𝑡𝑒𝑟[𝑑𝑜𝑤𝑛𝐴𝑥𝑖𝑠] = 𝑐𝑒𝑛𝑡𝑒𝑟[𝑑𝑜𝑤𝑛𝐴𝑥𝑖𝑠] −
1

2
𝐺 ∗ 𝑡2

 Dynamic interpolation without gravity (Dynamics on, Gravity off): The model follows

Newton’s First Law and moves in constant motion based on v0 of the final keyframe:

𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑓𝑖𝑛𝑎𝑙𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑡 ∗ 𝑓𝑖𝑛𝑎𝑙𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣0

 Dynamic interpolation with gravity (Dynamics on, Gravity on): The model moves

according to projectile motion, which is constant motion + gravity:

𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑓𝑖𝑛𝑎𝑙𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑡 ∗ 𝑓𝑖𝑛𝑎𝑙𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒. 𝑣0

𝑐𝑒𝑛𝑡𝑒𝑟[𝑑𝑜𝑤𝑛𝐴𝑥𝑖𝑠] = 𝑐𝑒𝑛𝑡𝑒𝑟[𝑑𝑜𝑤𝑛𝐴𝑥𝑖𝑠] −
1

2
𝐺 ∗ 𝑡2

Collision Detection

Collision detection is optimized using bounding spheres [4]. Each model as a bounding sphere

denoted by its center and radius. The center is the average of all vertices (sum of vertices /

number of vertices) and the radius is the maximum distance from the center to any vertex.

For two models A and B, there is no collision if

√(𝐴. 𝑐𝑒𝑛𝑡𝑒𝑟[𝑥] − 𝐵. 𝑐𝑒𝑛𝑡𝑒𝑟[𝑥])2 + (𝐴. 𝑐𝑒𝑛𝑡𝑒𝑟[𝑦] − 𝐵. 𝑐𝑒𝑛𝑡𝑒𝑟[𝑦])2 + (𝐴. 𝑐𝑒𝑛𝑡𝑒𝑟[𝑧] − 𝐵. 𝑐𝑒𝑛𝑡𝑒𝑟[𝑧])2

> 𝐴. 𝑟𝑎𝑑𝑖𝑢𝑠 + 𝐵. 𝑟𝑎𝑑𝑖𝑢𝑠

That is, the distance between the centers are greater than the sum of the radiuses means there’s

no collision.

The broad phase runs efficiently because it doesn’t need to check individual vertices of the mesh.

If the broad phase does not detect a collision, the algorithm can return false. Otherwise, it has to

run the narrow phase [2].

The narrow phase checks for vertex-face collision, face-vertex collision, edge-face collision and

face-edge collision to determine if model A has collided with model B.

 vertex-face collision:

v = velocity of A

for each vertex p in A

 for each face f in B

 rayTriangleIntersection(ray(p, v), triangle(f))

 point of intersection = p + t*v

 if t<=0

 n = f.normal

 return collisionDetected

 face-vertex collision: Similar to vertex-face collision, but uses –v as velocity, checking

all vertices in B with all faces in A, and uses the normal of B’s vertex as the collision

normal

 edge-face collision:

for each edge e in A

 for each face f in B

 rayTriangleIntersection(ray(e), triangle(f))

 point of intersection = e.start + t*e

 if 0 <= t <= 1

 n = f.normal

 return collisionDetected

 face-edge collision: Similar to edge-face collision, but checking each edge in B with each

face in A

Ray-Triangle Intersection [6] is done with:

rayTriangleIntersection(ray r, triangle f)

 if dot(f.normal, r) == 0 // r is parallel to f

 return false

 t = dot(f.point0 – r.start, f.normal) / dot(r, f.normal)

 if t<0 or t>1 // intersection outside of endpoints

 return false

 poi = r.start + t * r

 // check intersection point is in triangle

 if dot(n, cross((f.point1-f.point0), poi-f.point0)) >= 0

and dot(n, cross((f.point2-f.point1), poi-f.point1)) >= 0

and dot(n, cross((f.point0-f.point2), poi-f.point2)) >= 0

 return true

Since spheres are used very often and have a large number of vertices, I made the program more

efficient by using a different algorithm [7] in the narrow phase if one of the models is a sphere to

avoid checking all its vertices.

If A and B are both spheres, collision is detected if broad phase collision is detected. The normal

would be normalize(A.center – B.center)

If only A is a sphere, I use a sphere-triangle intersection algorithm for the sphere A with every

face in B

sphereTriangleIntersection(sphere A, triangle f)

 // check if A touches the plane of f

 if abs(dot(f.point0, f.normal)) > A.radius

 return false

 // check if A lies within the vertices of f

 for each vertex p in f

 // distance from p to A.center

 d = sqrt(dot(p – A.center, p – A.center))

 if d > A.radius

and dot(f.point1 - p, p– A.center) > 0

and dot(f.point2 - p, p– A.center) > 0

 return false

 // check if A lies within the edges of f

 for each edge e in f

 t = dot(A.center – edge.start, edge) / dot(edge, edge)

p = edge.start + t * edge

if sqrt(dot(A.center – p, A.center – p)) > r

and dot(A.center – p, f.oppositeVertex - p) < 0

 return false

 return true

3D Elastic Collisions

When Dynamics is enabled for a model A, it will bounce off after colliding with model B instead

of stopping. If B does not have Dynamics enabled, the new velocity v1 of A will be the reflection

of the velocity v0 of A before the collision. It will be reflected about the normal n of the face in B

that A collided with.

𝐴. 𝑣1 = 𝐴. 𝑣0 − 2 ∗ 𝑑𝑜𝑡(𝐴. 𝑣0, 𝑛) ∗ 𝑛

If B has Dynamics enabled, we do 3D elastic collisions.

In 1D elastic collisions, according to the conservation of momentum:

𝑣𝑎1 =
𝑚𝑎 − 𝑚𝑏

𝑚𝑎 + 𝑚𝑏
𝑣𝑎0 +

2𝑚𝑏

𝑚𝑎 + 𝑚𝑏
𝑣𝑏0

𝑣𝑏1 =
𝑚𝑏 − 𝑚𝑎

𝑚𝑎 + 𝑚𝑏
𝑣𝑏0 +

2𝑚𝑎

𝑚𝑎 + 𝑚𝑏
𝑣𝑎0

We can extend this to 3D by splitting the velocity into components

𝑣 = 𝑣⊥ + 𝑣∥

where 𝑣⊥ is the component of velocity of A that is perpendicular to the face of B and 𝑣∥ is the

component of velocity that is parallel to the face. This means:

𝑣⊥ = 𝑑𝑜𝑡(𝑣, 𝑛) ∗ 𝑛

𝑣∥ = 𝑣 − 𝑣⊥

The parallel component of velocity would be unaffected by the collision. Imagine two objects,

one going left, the other going right, only scraping against each other. They will continue moving

unaffected by that collision.

The perpendicular component of velocity will change according to 1D elastic collisions. We can

treat it as 1D, because everything moves along the collision normal.

We get the equation for 3D elastic collision:

𝑣𝑎1 = 𝑣𝑎0∥ +
𝑚𝑎 − 𝑚𝑏

𝑚𝑎 + 𝑚𝑏
𝑣𝑎0⊥ +

2𝑚𝑏

𝑚𝑎 + 𝑚𝑏
𝑣𝑏0⊥

𝑣𝑏1 = 𝑣𝑏0∥ +
𝑚𝑏 − 𝑚𝑎

𝑚𝑎 + 𝑚𝑏
𝑣𝑏0⊥ +

2𝑚𝑎

𝑚𝑎 + 𝑚𝑏
𝑣𝑎0⊥

Sound

The collision and moving sounds are played with the SFML Audio library [8]. This library has

APIs:

 sound.play(): plays the sound

 sound.pause()

 sound.stop():stops at the beginning

 sound.volume(float volume): changes the volume between 0 and 100

The sounds are loaded from WAV files into a SoundBuffer.

Every time there’s a collision, each collided model plays its own collision sound. For the moving

sound, this plays whenever the model has non-zero velocity.

The volume of the sound depends on distance to the camera and kinetic energy. The kinetic

energy gets transferred into sound during the collision, or when it’s moving and colliding with

air particles to create sound.

The kinetic energy 𝐸𝑘 =
1

2
𝑚𝑣2

The volume (intensity) of the sound is affected by distance to camera according to the Inverse

Square Law for Sound Intensity [5]: 𝐼 =
𝑃

4𝜋𝑟2, where I is the intensity of the sound, P is the

source power, r is the distance to the sound’s source

We get:

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑐
𝐸𝑘

4𝜋𝑟2

We multiply volume by a constant c to ensure that it’s a reasonable value between 0 and 100, not

too loud or too quiet, so that changes to Ek and r can be heard

Texture Mapping

Textures are loaded from BMP files. The program that loads the texture reads the bytes in the

file. The header specifies information, such as the dimensions and size of the body. The body

contains BGR values for every 3 bytes for every pixel, which are reversed to get RGB values.

We bind the texture to an index with glBindTexture and save that index in a list of textures.

Then we initialize the texture to contain the data from the BMP file with glTexImage2D.

Then, set min and mag filter to linear with glTexParameteri, which averages the pixel

being displayed with the surrounding pixel colors when the display pixel maps to an area that’s

larger or smaller than a pixel in the texture.

When rendering a model, if it has a texture with id texid, we activate the texture with:

 glActiveTexture(GL_TEXTURE0 + texid);

glBindTexture(GL_TEXTURE_2D, texid);

and pass the texid to the Fragment Shader.

In the Fragment Shader, the current pixel would have the color from

texture2D(texid, fs_in.uv).rgb

which obtains the color of the texture image at the pixel specified by the UV coordinates

The UV values of each vertex are read from the OBJ file of the model. They specify which part

of the texture image each vertex maps to. For example

 vt 0.0 0.0 #bottom left corner of the image

 vt 1.0 1.0 #top right corner of the image

Each face in the OBJ file would then be denoted as

 f a1/b1/c1 a2/b2/c2 a3/b3/c3

where ai, bi, ci are integers specifying which coordinate, uv value, normal are associated

with vertex i in the triangular face.

The Vertex Shader interpolates the UV value at each pixel using the UV of the vertices, and

passes this value to the Fragment Shader for texture mapping.

Skybox

The skybox is a cube around the camera with textures for each of the 6 sides. Only camera

rotations are applied to the skybox when rendering, not camera translations. This gives the

illusion that the sides of the box are very far away.

Also, before rendering, we set glDepthMask(GL_FALSE) to prevent the models from

disappearing outside the skybox. This ensures that nothing ends up covered by the box.

Everything is rendered in front of the box’s rendering.

The 6 textures are mapped to their respective side of the cube, similar to texture mapping, but

using GL_TEXTURE_CUBE_MAP instead of GL_TEXTURE_2D

The SkyboxFragmentShader gets the pixel’s color with

 texture(skyboxid, position)

where skyboxid is of type samplerCube passed from the program as a uniform, and

position comes from the VertexShader describing the coordinates of the point being rendered

Reflection and Refraction Mapping

Reflection mapping lets the model reflect the skybox, while refraction mapping makes the model

transparent.

In the Vertex Shader, the reflected and refracted rays are obtained through:

 Get the reflected ray using the position and normal in the view coordinate space, where

the camera is the origin and the position_ES is the ray from the camera to the point

vs_out.reflected = reflect(normalize(vs_out.position_ES),

vs_out.normal_ES);

 undo the transformation that put the point into view coordinate space

vs_out.reflected = vec3(inverse(ModelView) *

vec4(vs_out.reflected, 0.0));

 get the refracted ray using the position and normal in the view coordinate space, where

the camera is the origin and the position_ES is the ray from the camera to the point.

refractionRatio = environmentRefractiveIndex / modelRefractiveIndex

vs_out.refracted = refract(normalize(vs_out.position_ES),

vs_out.normal_ES, refractionRatio);

 undo the transformation that put the point into view coordinate space

vs_out.refracted = vec3(inverse(ModelView) *

vec4(vs_out.refracted, 0.0));

The reflected and refracted rays get passed to the Fragment Shader. The Fragment Shader gets

the color of the pixel based on the color of the skybox where the reflected/refracted ray hits.

 reflectedCol = textureCube(skyboxMap, fs_in.reflected).rgb;

refractedCol = textureCube(skyboxMap, fs_in.refracted).rgb;

It takes a percentage of the reflected or refracted color based on the reflectivity or transparency

settings of the model. The rest of the color is the diffuse color or texture. For example:

totCol = col * (1 - reflectivity) + reflectedCol * reflectivity;

Cel Shading

Cel shading is done in the Fragment Shader by taking the color before it gets outputted and

snapping it to an interval through a step function. For example, after getting fragColor through

the phongModel (the color comes from kd, ks, texture or reflection/refraction mapping), we run:

for (int i=0; i<3; i++) {

 fragColour[i] = step10(fragColour[i]);

 }

That is, for every each value in RGB for the fragment color, snap it to an interval with

float step10(float n) {

for (int i=1; i<=10; i++) {

 if (n < i/10.0) return i/10.0;

 }

}

This sets values less than 0.1 to 0.1, values between 0.1 and 0.2 to 0.2, values between 0.2 and

0.3 to 0.3, and so on

Importing and Exporting Animations

The keyframes and settings of an animation can be saved in .ani files, which are basically text

files that the program can parse. This would allow users to replay existing animations and edit

animations over a long period of time.

Exporting an animation writes to a file named Animations/new.ani. It outputs keyframe and

model information into the file, such as the NodeState for every model in every keyframe, the

texture that each model uses, which skybox being used, etc.

When importing an animation, the program reads the file into variables such as the list of

keyframes, or the fields saving the model settings. It expects all the data to be in the same order

and locations that it was exported as.

Future Possibilities

Reflecting Other Models

Right now, a model with reflectivity only reflects the skybox, not other models around it. The

reflected ray from the Vertex Shader is used by the Fragment Shader to determine the color of

the skybox where the reflected ray hits. Instead of using the skybox’s texture, the program could

use other models’ textures, determine which model the reflected ray will hit and use the color

from the other model’s texture instead of the skybox. The Fragment Shader would need to be

passed the textures of every model. There would need to be an algorithm in the Fragment Shader

for determining which model the reflected ray hits first

Animating models with joints

Right now, models with joints will not move the joints when the animation plays, because it

thinks it’s colliding with the node above it in the node tree. This should be easy to fix by only

doing collision detection for nodes on different subtrees of the root node, not for nodes on the

same subtree.

Inelastic Collisions with Deformation [3]

In an inelastic collision, some of the kinetic energy gets transformed into energy to make the

model deform. To do deformation, each vertex in the mesh has to be transformed, rather than

transforming the whole model as a rigid body. When a vertex collides with a surface, it would

stop while the other vertices keep moving until they also collide. This would cause the model to

squish when it hits the surface. When it reaches a certain point based on the viscosity of the

model, it might bounce back. The squished vertices would return to its original place in the

model when it no longer collides with the surface.

Torque

When two models collide it should affect their rotations along with their translations. When a

rotating model hits another model, it would cause itself the other to rotate in the opposite

direction. When a model scraps against another model, they should start rotating. For the physics

engine to simulate torque, the models would need to have friction. It would get the component of

angular velocity from the velocity before collision to determine how fast the models will rotate.

Bibliography

[1] Kort, Alexander. “Computer Aided Inbetweening.” Proceedings of the Second International

Symposium on Non-Photorealistic Animation and Rendering - NPAR '02, 2002,

doi:10.1145/508530.508552.

 This paper provides algorithms for interpolating between keyframes. Although it focuses

on 2D animation, the concepts can still be transfered to 3D

[2] Moore, Matthew, and Wilhelms, Jane. “Collision Detection and Response for Computer

Animation.” Proceedings of the 15th Annual Conference on Computer Graphics and Interactive

Techniques - SIGGRAPH '88, 1988, doi:10.1145/54852.378528.

 This paper provides equations for detecting if two models have collided and how they

should behave afterwards.

[3] Barbic, Jernej, et al. “Deformable Object Animation Using Reduced Optimal Control.” ACM

SIGGRAPH 2009 Papers on - SIGGRAPH '09, 2009, doi:10.1145/1576246.1531359.

 This paper describes how to do physically based animations, focusing on deforming the

model rather than moving the model through the scene

[4] Sulaiman, Hamzah Asyrani, and Abdullah Bade. Bounding Volume Hierarchies for Collision

Detection. INTECH Open Access Publisher, 2012.

 This textbook describes how to use bounding volumes to make collision detection more

efficient for complex models

[5] “Inverse Square Law, Sound.” Inverse Square Law for Sound, http://hyperphysics.phy-

astr.gsu.edu/hbase/Acoustic/invsqs.html.

 Describes how sound intensity varies with distance

[6] Scratchapixel. “Ray-Triangle Intersection: Geometric Solution.” Ray Tracing: Rendering a

Triangle, 15 Aug. 2014, www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-

rendering-a-triangle/ray-triangle-intersection-geometric-solution.

 Algorithm for detecting intersection between line and triangle, used in collision detection

[7] Ericson, Christer. “Optimizing a Sphere-Triangle Intersection Test.”

Realtimecollisiondetection.net – the Blog, 30 Dec. 2010,

http://realtimecollisiondetection.net/blog/?p=103.

 Algorithm for detecting intersection between sphere and triangle, used for optimizing

collision detection for spheres

[8] Gomila, Laurent. “Playing Sounds and Music.” SFML Tutorials, www.sfml-

dev.org/tutorials/2.4/audio-sounds.php.

 Tutorial on how SFML Audio works, the library used to play sound

http://hyperphysics.phy-astr.gsu.edu/hbase/Acoustic/invsqs.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Acoustic/invsqs.html
http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/ray-triangle-intersection-geometric-solution
http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/ray-triangle-intersection-geometric-solution
http://realtimecollisiondetection.net/blog/?p=103
http://www.sfml-dev.org/tutorials/2.4/audio-sounds.php
http://www.sfml-dev.org/tutorials/2.4/audio-sounds.php

