

UNIVERSITY OF WATERLOO

Faculty of Mathematics

A Project to Connect Two Oceans of Programming Languages

IBM Canada

Ottawa, Ontario

Table of Contents

Table of Contents.. ii

List of Tables and Figures... iii

Executive Summary... iv

1.0 Introduction... 1

2.0 Analysis... 4

2.1 Compilation... 4

2.2 Data Types.. 7

2.3 Calling Conventions.. 9

3.0 Conclusion.. 11

References... 12

ii

List of Figures

Figure 1 - Project Panama connects two languages.. 1

Figure 2 - Creating and invoking a native method handle.. 2

Figure 3 - Two arguments on the Java stack... 3

Figure 4 - The method names are mangled... 5

Figure 5: A grovelled native method with metadata about the mangled name.............................. 6

Figure 6: Higher level native method call on a grovelled method.. 6

Figure 7 - The Pointer class.. 7

Figure 8 - The MethodHandle API provides filters to convert pointers between native and Java. 8

Figure 9 - A structure with two fields on the stack... 8

Figure 10 - A grovelled structure.. 9

Figure 11 - Field a is moved to register RCX and field b is moved to XMM0............................ 10

iii

Executive Summary

The purpose of this report is to compare how a program runs in Java to how it runs in native

languages such as C and C++, and to show how native methods handles in Project Panama

bridges the gap between these two types of languages. This involves solving problems caused by

the compilation, the data types and the calling conventions of native languages, and comparing

Project Panama with existing ways to call native methods. This report is intended for readers

who have knowledge in program execution and object-oriented programming concepts.

Native method handles are able to call C or C++ methods in Java by obtaining the address from a

native library using the method name. However, C++ method names are mangled during

compile-time. To solve this problem, the native library is grovelled so that it contains metadata

used by the native method handle when calling a native method.

There are data types in C and C++ that do not have direct Java equivalents, and vice versa. This

means certain argument or return types could not be mapped between Java and native methods.

Project Panama solves this problem by providing additional Java classes to represent data types

such as pointers and structures.

Arguments are passed to the native method through the stack. However, integer values and

floating point values are saved in different sets of registers on certain machines. The interface

that Project Panama uses to call the method would only know which register set contains the

values if it is given the argument types.

The major conclusion is that Project Panama is a safe and user-friendly way for Java programs to

access native methods.

iv

1.0 Introduction

The goal of Project Panama is to allow Java programmers to use the same libraries that non-Java

programmers can use. Just like how the Panama Canal connects two oceans, Project Panama

aims to connect two groups of programming languages: Java and native languages, namely C

and C++. However, the compile-time and runtime differences between these languages make this

task challenging.

Figure 1: Project Panama connects two languages

Project Panama provides an alternative to the existing Java Native Interface (JNI), with

application program interfaces (APIs) that are safer and easier to use. The programmer would not

have to write JNI binding code, such as a JNI function for each native method. Project Panama

also allows data types such as pointers and structures to be used safely, while JNI only supports

primitive types and objects.

Programs written in native languages are compiled into object code and run on the machine

itself, while Java programs are compiled into byte code and run on the Java Virtual Machine

(JVM). This means a Java program can not call a native method directly like a Java method, but

instead it must call the native method through a Foreign Function Interface (FFI). This call is

1

triggered when invoking a native method handle, a new Java feature provided by Project

Panama. The native program must be compiled into a native library. The native method handle

then does a lookup in the native library to find the address of the method. Therefore, information

about the native library, the method name, and the argument and return types are required.

Figure 2: Creating and invoking a native method handle

Primitive data types, such as integers and floating point values, can be mapped directly between

Java and native languages, but more complex data types, such as pointers and structures, exist in

native languages but not in Java. Thus, there needs to be a way to express these data types in

Java when calling methods where they are the argument or return types.

Argument values are copied from the Java stack to an internal buffer, which is then later copied

to the native stack or passed by register. The native method handle has an interface for invoking

the method, and the JVM interpreter puts the arguments onto the stack and triggers the FFI call

on the method. However, different machines have different calling conventions, such as which

set of registers store the argument values. Thus, the FFI call needs to be provided with enough

information to resolves these differences.

2

Figure 3: Two arguments on the Java stack

3

2.0 Analysis

This report will compare Project Panama with JNI and analyze the challenges that Project

Panama faces for a Java program to be able to call a native method. There are many differences

between Java and native languages, but this report will focus on three of them: how programs are

compiled, how values are stored, and how arguments are passed.

2.1 Compilation

A native method gets compiled into object code, which can not run on the JVM, but a Java

program can trigger a call-out on a native method with a native method handle. The native

method handle does a FFI call with the address of the native method. This address can be

obtained by doing a symbol lookup on the native library using the method name.

In C, the symbol lookup uses the name of the native method, so the programmer is expected to

know it. However, C++ is object-oriented, which means methods can have the same name

through overloading or if they belong to different classes. This is why name mangling happens

when a C++ program is compiled, where the information about the argument types and parent

classes are added onto the name of the method. This poses a problem for the symbol lookup,

since it requires the mangled name that the programmer would not know.

4

Figure 4: The method names are mangled

One solution is where the native method handle generates the mangled name programmatically

using the given argument types before doing the symbol lookup. However, this would not be

suitable, because the mangled name includes the class the method belongs to, which the native

method handle would not know, and because the name mangling conventions are different for

each compiler.

Project Panama solves this problem by grovelling the native library to create a Java interface that

contains each native method as an abstract Java method. Each method contains metadata about

the mangled name, and the argument and return types.

5

Figure 5: A grovelled native method with metadata about the mangled name

Instead of creating a method handle and invoking it, the programmer can do a higher level native

method call through the Java interface created by the groveller. Project Panama is able to obtain

the necessary information from the metadata to create a private native method handle for the

higher level call. It then automatically invokes that method handle to trigger the FFI call.

This is the preferred way of calling native methods in Project Panama and the only way that will

be provided to users. The low level way of invoking a native method handle will be hidden or

made hard to access. The final product will require users to run the groveller to generate the

interfaces, while mechanisms for invoking native method handles directly will be used mostly by

JVM developers to support the high level functionality.

Figure 6: Higher level native method call on a grovelled method

6

2.2 Data Types

Pointers and structures exist in native languages, but not in Java, so how would Project Panama

deal with native methods that take these data types as argument or return values?

One way to store a pointer in Java would be simply as an integer or long variable containing the

address, as it is done in JNI. However, this would lose all type safety. The data type that the

pointer points to may not be the right type for the operation.

In addition, directly accessing to the value that the pointer makes reference to can cause the JVM

to crash. A Java program can use an address to access native memory directly through the

sun.misc.Unsafe API. However, as the name suggests, this is unsafe. It is platform dependent and

allows users to access memory that shouldn't be accessed. One of the main goals of Project

Panama is to provide a safer alternative to limit the use of Unsafe APIs.

Project Panama provides a Pointer class, which stores the address as one of its fields, but also

has an function called lvalue for obtaining the value that the address refers to.

Figure 7: The Pointer class

The native side can not use an object of type Pointer, which is a Java class. To pass an argument

of type Pointer from Java to the native side, it would have to be converted into a long value

containing the address, before saving that value onto the stack. A pointer return value is passed

7

from the native method to the Java side as a long value which can be used to create an object of

type Pointer.

Figure 8: The MethodHandle API provides filters to convert pointers between native and

Java

For structure data types, JNI uses DirectByteBuffer or sun.misc.Unsafe, and the programmer has

to manually keep track of memory offsets. This can cause safety issues. For example, if the

offset is wrong, the program will try to access memory that is not part of the structure. Project

Panama represents structures as interfaces in a grovelled native library, which is safer and more

user-friendly, since the programmer will not have to worry about the memory locations.

A structure can then get passed into or out from a native method as a consecutive slots on the

stack. However, the FFI call needs to know where the structure ends, in other words, the size of

the structure. Since the size of the structure depends on its field types, there needs to be

information about the fields of the structure.

Figure 9: A structure with two fields on the stack

8

Information about a structure's fields can be provided in the metadata of a grovelled native

library. The layout metadata describes the argument and return types of a native method, or the

field types of a structure. When the native method is invoked, the higher level native method

handle parses the layout to obtain the structure's field types for the FFI call.

Figure 10: A grovelled structure and native method with metadata about the layout

2.3 Calling Conventions

Since Java programs run on the JVM and native programs run on the machine itself, native

programs can not access values from the Java side directly, and Java programs do not have

access to values from the native side. This poses a challenge when passing argument and return

values between Java programs and native methods.

To solve this problem, the JVM provides an interpreter containing two stacks, the Java stack

which stores values from the Java side, and the native stack which stores values from the native

side. The interpreter can move values from one stack to another. It also has information about the

pointer to the first slot of the stack frame, and the stack pointer which points to the top of the

current stack.

9

An argument is passed into a native method by moving the value from the Java stack to the

native stack so that the native method can access it. Similarly, a return value is passed from the

native method to Java by moving it from the native stack to the Java stack.

When passing a structure into or out of a native method, the structure's size is required, as

explained in the previous section. However, it is not enough to only provide the size. The FFI

call requires information about the data type of each individual field of the structure. This is

because calling conventions require that values of different types are not passed in the same way

during a method call.

For example, the x86 calling conventions state that integers are passed to registers RCX, RDX,

R8, R9 and floating point numbers are passed to registers XMM0, XMM1, XMM2, XMM3. This

means the FFI call needs to know which fields are integer and which fields are floating point, so

that it would know which set of registers to find the values.

Figure 11: Field a is moved to register RCX and field b is moved to XMM0

This is why the FFI call needs to be provided with the argument and return types by the

programmer, and a structure's field types from the layout metadata.

10

3.0 Conclusion

In conclusion, Project Panama allows Java programs to call native methods by using the correct

name of the method to do symbol lookup, providing classes to represent pointers and structures

in Java, and following calling conventions when passing argument and return values. It provides

a more safety and usability than existing APIs for calling native methods, such as JNI.

A C++ method undergoes name mangling when compiled, which poses a challenge when doing

symbol lookup, since the programmer isn't expected to know the mangled name. Project Panama

solves this problem by obtaining the mangled name from the metadata of a grovelled native

library.

Pointers and structures are data types that exist in native languages, but not in Java. To pass and

receive such values from native methods, Project Panama uses classes that contain the address of

the data and an interface to obtain the value. This is a safer alternative to accessing memory

directly with the Unsafe API.

Calling conventions differ by machine. Integer and floating point values may be passed into

different sets of registers. Project Panama resolves problems caused by calling conventions by

providing information about the argument and return types to the FFI call, including the field

types of structures.

11

References

Project Panama: Interconnecting JVM and native code [Online].

“http://openjdk.java.net/projects/panama/”

Project Panama Layout Prototype [Online].

“https://developer.ibm.com/open/openprojects/project-panama-layout-prototype/”

The isthmus in the VM [Online].

“https://blogs.oracle.com/jrose/entry/the_isthmus_in_the_vm”

Parameter Passing [Online].

“https://msdn.microsoft.com/en-us/library/zthk2dkh.aspx”

Name mangling demystified [Online].

“http://www.int0x80.gr/papers/name_mangling.pdf”

The Structure of the Java Virtual Machine [Online].

“https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html”

12

